C++ Questions 1. What is a modifier? Answer: A modifier, also called a modifying function is a member function that changes the value of at least one data member. In other words, an operation that modifies the state of an object. Modifiers are also known as 'mutators'.
2. What is an accessor? Answer: An accessor is a class operation that does not modify the state of an object. The accessor functions need to be declared as const operations
3. Differentiate between a template class and class template. Answer: Template class: A generic definition or a parameterized class not instantiated until the client provides the needed information. It's jargon for plain templates. Class template: A class template specifies how individual classes can be constructed much like the way a class specifies how individual objects can be constructed. It's jargon for plain classes.
4. When does a name clash occur? Answer: A name clash occurs when a name is defined in more than one place. For example., two different class libraries could give two different classes the same name. If you try to use many class libraries at the same time, there is a fair chance that you will be unable to compile or link the program because of name clashes.
5. Define namespace. Answer: It is a feature in c++ to minimize name collisions in the global name space. This namespace keyword assigns a distinct name to a library that allows other libraries to use the same identifier names without creating any name collisions. Furthermore, the compiler uses the namespace signature for differentiating the definitions.
6. What is the use of 'using' declaration. Answer: A using declaration makes it possible to use a name from a namespace without the scope operator.
7. What is an Iterator class? Answer: A class that is used to traverse through the objects maintained by a container class. There are five categories of iterators: input iterators,Ø output iterators,Ø forwardØ iterators, bidirectional iterators,Ø random access.Ø An iterator is an entity that gives access to the contents of a container object without violating encapsulation constraints. Access to the contents is granted on a one-at-a-time basis in order. The order can be storage order (as in lists and queues) or some arbitrary order (as in array indices) or according to some ordering relation (as in an ordered binary tree). The iterator is a construct, which provides an interface that, when called, yields either the next element in the container, or some value denoting the fact that there are no more elements to examine. Iterators hide the details of access to and update of the elements of a container class. The simplest and safest iterators are those that permit read-only access to the contents of a container class. The following code fragment shows how an iterator might appear in code: cont_iter:=new cont_iterator(); x:=cont_iter.next(); while x/=none do ... s(x); ... x:=cont_iter.next(); end; In this example, cont_iter is the name of the iterator. It is created on the first line by instantiation of cont_iterator class, an iterator class defined to iterate over some container class, cont. Succesive elements from the container are carried to x. The loop terminates when x is bound to some empty value. (Here, none)In the middle of the loop, there is s(x) an operation on x, the current element from the container. The next element of the container is obtained at the bottom of the loop.
9. List out some of the OODBMS available. Answer: Ø GEMSTONE/OPAL of Gemstone systems. ONTOS of Ontos.Ø Objectivity ofØ Objectivity inc. Versant of Versant object technology.Ø Object store ofØ Object Design. ARDENT of ARDENT software.Ø POET of POETØ software.
10. List out some of the object-oriented methodologies. Answer: Object Oriented Development (OOD) (BoochØ 1991,1994). Object Oriented Analysis and Design (OOA/D) (Coad and YourdonØ 1991). Object Modelling Techniques (OMT) (Rumbaugh 1991).Ø ObjectØ Oriented Software Engineering (Objectory) (Jacobson 1992). Object OrientedØ Analysis (OOA) (Shlaer and Mellor 1992). The Fusion Method (ColemanØ 1991).
11. What is an incomplete type? Answer: Incomplete types refers to pointers in which there is non availability of the implementation of the referenced location or it points to some location whose value is not available for modification. Example: int *i=0x400 // i points to address 400 *i=0; //set the value of memory location pointed by i. Incomplete types are otherwise called uninitialized pointers.
12. What is a dangling pointer? Answer: A dangling pointer arises when you use the address of an object after its lifetime is over. This may occur in situations like returning addresses of the automatic variables from a function or using the address of the memory block after it is freed.
13. Differentiate between the message and method. Answer: Message Method Objects communicate by sending messages Provides response to a message. to each other. A message is sent to invoke a method. It is an implementation of an operation.
14. What is an adaptor class or Wrapper class? Answer: A class that has no functionality of its own. Its member functions hide the use of a third party software component or an object with the non-compatible interface or a non- object- oriented implementation.
15. What is a Null object? Answer: It is an object of some class whose purpose is to indicate that a real object of that class does not exist. One common use for a null object is a return value from a member function that is supposed to return an object with some specified properties but cannot find such an object.
16. What is class invariant? Answer: A class invariant is a condition that defines all valid states for an object. It is a logical condition to ensure the correct working of a class. Class invariants must hold when an object is created, and they must be preserved under all operations of the class. In particular all class invariants are both preconditions and post-conditions for all operations or member functions of the class.
17. What do you mean by Stack unwinding? Answer: It is a process during exception handling when the destructor is called for all local objects between the place where the exception was thrown and where it is caught.
18. Define precondition and post-condition to a member function. Answer: Precondition: A precondition is a condition that must be true on entry to a member function. A class is used correctly if preconditions are never false. An operation is not responsible for doing anything sensible if its precondition fails to hold. For example, the interface invariants of stack class say nothing about pushing yet another element on a stack that is already full. We say that isful() is a precondition of the push operation.
Post-condition: A post-condition is a condition that must be true on exit from a member function if the precondition was valid on entry to that function. A class is implemented correctly if post-conditions are never false. For example, after pushing an element on the stack, we know that isempty() must necessarily hold. This is a post-condition of the push operation.
19. What are the conditions that have to be met for a condition to be an invariant of the class? Answer: Ø The condition should hold at the end of every constructor. The conditionØ should hold at the end of every mutator(non-const) operation.
20. What are proxy objects? Answer: Objects that stand for other objects are called proxy objects or surrogates. Example: template<class T> class Array2D { public: class Array1D { public: T& operator[] (int index); const T& operator[] (int index) const; ... }; Array1D operator[] (int index); const Array1D operator[] (int index) const; ... };
The following then becomes legal: Array2D<float>data(10,20); ........ cout<<data[3][6]; // fine
Here data[3] yields an Array1D object and the operator [] invocation on that object yields the float in position(3,6) of the original two dimensional array. Clients of the Array2D class need not be aware of the presence of the Array1D class. Objects of this latter class stand for one-dimensional array objects that, conceptually, do not exist for clients of Array2D. Such clients program as if they were using real, live, two-dimensional arrays. Each Array1D object stands for a one-dimensional array that is absent from a conceptual model used by the clients of Array2D. In the above example, Array1D is a proxy class. Its instances stand for one-dimensional arrays that, conceptually, do not exist.
21. Name some pure object oriented languages. Answer: Smalltalk,Ø Java,Ø Eiffel,Ø Ø Sather.
22. Name the operators that cannot be overloaded. Answer: sizeof . .* .-> :: ?:
23. What is a node class? Answer: A node class is a class that, relies on the base classØ for services and implementation, provides a wider interface to te usersØ than its base class, relies primarily on virtual functions in its publicØ interface depends on all its direct and indirect base classØ can beØ understood only in the context of the base class can be used as base forØ further derivation can be used to create objects.Ø A node class is a class that has added new services or functionality beyond the services inherited from its base class.
24. What is an orthogonal base class? Answer: If two base classes have no overlapping methods or data they are said to be independent of, or orthogonal to each other. Orthogonal in the sense means that two classes operate in different dimensions and do not interfere with each other in any way. The same derived class may inherit such classes with no difficulty.
25. What is a container class? What are the types of container classes? Answer: A container class is a class that is used to hold objects in memory or external storage. A container class acts as a generic holder. A container class has a predefined behavior and a well-known interface. A container class is a supporting class whose purpose is to hide the topology used for maintaining the list of objects in memory. When a container class contains a group of mixed objects, the container is called a heterogeneous container; when the container is holding a group of objects that are all the same, the container is called a homogeneous container.
26. What is a protocol class? Answer: An abstract class is a protocol class if: itØ neither contains nor inherits from classes that contain member data, non-virtual functions, or private (or protected) members of any kind. it has aØ non-inline virtual destructor defined with an empty implementation, allØ member functions other than the destructor including inherited functions, are declared pure virtual functions and left undefined.
27. What is a mixin class? Answer: A class that provides some but not all of the implementation for a virtual base class is often called mixin. Derivation done just for the purpose of redefining the virtual functions in the base classes is often called mixin inheritance. Mixin classes typically don't share common bases.
28. What is a concrete class? Answer: A concrete class is used to define a useful object that can be instantiated as an automatic variable on the program stack. The implementation of a concrete class is defined. The concrete class is not intended to be a base class and no attempt to minimize dependency on other classes in the implementation or behavior of the class.
29.What is the handle class? Answer: A handle is a class that maintains a pointer to an object that is programmatically accessible through the public interface of the handle class. Explanation: In case of abstract classes, unless one manipulates the objects of these classes through pointers and references, the benefits of the virtual functions are lost. User code may become dependent on details of implementation classes because an abstract type cannot be allocated statistically or on the stack without its size being known. Using pointers or references implies that the burden of memory management falls on the user. Another limitation of abstract class object is of fixed size. Classes however are used to represent concepts that require varying amounts of storage to implement them. A popular technique for dealing with these issues is to separate what is used as a single object in two parts: a handle providing the user interface and a representation holding all or most of the object's state. The connection between the handle and the representation is typically a pointer in the handle. Often, handles have a bit more data than the simple representation pointer, but not much more. Hence the layout of the handle is typically stable, even when the representation changes and also that handles are small enough to move around relatively freely so that the user needn't use the pointers and the references. |