Monday, August 4, 2008

Java and C++ interview questions Papers

What are the main differences between Java and C++?

Everything is an object in Java( Single root hierarchy as everything gets derived from java.lang.Object). Java does not have all the complicated aspects of C++ ( For ex: Pointers, templates, unions, operator overloading, structures etc..)  The Java language promoters initially said "No pointers!", but when many programmers questioned how you can work without pointers, the promoters began saying "Restricted pointers." You can make up your mind whether it's really a pointer or not. In any event, there's no pointer arithmetic. There are no destructors in Java. (automatic garbage collection),  Java does not support conditional compile (#ifdef/#ifndef type). Thread support is built into java but not in C++. Java does not support default arguments. There's no scope resolution operator :: in Java. Java uses the dot for everything, but can get away with it since you can define elements only within a class. Even the method definitions must always occur within a class, so there is no need for scope resolution there either. There's no "goto " statement in Java. Java doesn't provide multiple inheritance (MI), at least not in the same sense that C++ does. Exception handling in Java is different because there are no destructors. Java has method overloading, but no operator overloading. The String class does use the + and += operators to concatenate strings and String expressions use automatic type conversion, but that's a special built-in case. Java is interpreted for the most part and hence platform independent

What are interfaces?

Interfaces provide more sophisticated ways to organize and control the objects in your system.
The interface keyword takes the abstract concept one step further. You could think of it as a "pure" abstract class. It allows the creator to establish the form for a class: method names, argument lists, and return types, but no method bodies. An interface can also contain fields, but The interface keyword takes the abstract concept one step further. You could think of it as a "pure" abstract class. It allows the creator to establish the form for a class: method names, argument lists, and return types, but no method bodies. An interface can also contain fields, but an interface says: "This is what all classes that implement this particular interface will look like." Thus, any code that uses a particular interface knows what methods might be called for that interface, and that's all. So the interface is used to establish a "protocol" between classes. (Some object-oriented programming languages have a keyword called protocol to do the same thing.)  Typical example from "Thinking in Java":

import java.util.*;
interface Instrument {
int i = 5; // static & final
// Cannot have method definitions:
void play(); // Automatically public
String what();
void adjust();
}
class Wind implements Instrument {
public void play() {
System.out.println("Wind.play()");
public String what() { return "Wind"; }
public void adjust() {}
}